33 research outputs found

    Oriol Bohigas

    Get PDF
    Peer Reviewe

    Numerical computation and avoidance of manipulator singularities

    Get PDF
    This thesis develops general solutions to two open problems of robot kinematics: the exhaustive computation of the singularity set of a manipulator, and the synthesis of singularity-free paths between given configurations. Obtaining proper solutions to these problems is crucial, because singularities generally pose problems to the normal operation of a robot and, thus, they should be taken into account before the actual construction of a prototype. The ability to compute the whole singularity set also provides rich information on the global motion capabilities of a manipulator. The projections onto the task and joint spaces delimit the working regions in such spaces, may inform on the various assembly modes of the manipulator, and highlight areas where control or dexterity losses can arise, among other anomalous behaviour. These projections also supply a fair view of the feasible movements of the system, but do not reveal all possible singularity-free motions. Automatic motion planners allowing to circumvent problematic singularities should thus be devised to assist the design and programming stages of a manipulator. The key role played by singular configurations has been thoroughly known for several years, but existing methods for singularity computation or avoidance still concentrate on specific classes of manipulators. The absence of methods able to tackle these problems on a sufficiently large class of manipulators is problematic because it hinders the analysis of more complex manipulators or the development of new robot topologies. A main reason for this absence has been the lack of computational tools suitable to the underlying mathematics that such problems conceal. However, recent advances in the field of numerical methods for polynomial system solving now permit to confront these issues with a very general intention in mind. The purpose of this thesis is to take advantage of this progress and to propose general robust methods for the computation and avoidance of singularities on non-redundant manipulators of arbitrary architecture. Overall, the work seeks to contribute to the general understanding on how the motions of complex multibody systems can be predicted, planned, or controlled in an efficient and reliable way.Aquesta tesi desenvolupa solucions generals per dos problemes oberts de la cinemàtica de robots: el càlcul exhaustiu del conjunt singular d'un manipulador, i la síntesi de camins lliures de singularitats entre configuracions donades. Obtenir solucions adequades per aquests problemes és crucial, ja que les singularitats plantegen problemes al funcionament normal del robot i, per tant, haurien de ser completament identificades abans de la construcció d'un prototipus. La habilitat de computar tot el conjunt singular també proporciona informació rica sobre les capacitats globals de moviment d'un manipulador. Les projeccions cap a l'espai de tasques o d'articulacions delimiten les regions de treball en aquests espais, poden informar sobre les diferents maneres de muntar el manipulador, i remarquen les àrees on poden sorgir pèrdues de control o destresa, entre d'altres comportaments anòmals. Aquestes projeccions també proporcionen una imatge fidel dels moviments factibles del sistema, però no revelen tots els possibles moviments lliures de singularitats. Planificadors de moviment automàtics que permetin evitar les singularitats problemàtiques haurien de ser ideats per tal d'assistir les etapes de disseny i programació d'un manipulador. El paper clau que juguen les configuracions singulars ha estat àmpliament conegut durant anys, però els mètodes existents pel càlcul o evitació de singularitats encara es concentren en classes específiques de manipuladors. L'absència de mètodes capaços de tractar aquests problemes en una classe suficientment gran de manipuladors és problemàtica, ja que dificulta l'anàlisi de manipuladors més complexes o el desenvolupament de noves topologies de robots. Una raó principal d'aquesta absència ha estat la manca d'eines computacionals adequades a les matemàtiques subjacents que aquests problemes amaguen. No obstant, avenços recents en el camp de mètodes numèrics per la solució de sistemes polinòmics permeten ara enfrontar-se a aquests temes amb una intenció molt general en ment. El propòsit d'aquesta tesi és aprofitar aquest progrés i proposar mètodes robustos i generals pel càlcul i evitació de singularitats per manipuladors no redundants d'arquitectura arbitrària. En global, el treball busca contribuir a la comprensió general sobre com els moviments de sistemes multicos complexos es poden predir, planificar o controlar d'una manera eficient i segur

    Branch switching from singular points in higher-dimensional continuation

    Get PDF
    We explain here how to perform branch switching when a singular point is found during higherdimensional continuation on a k-dimensional variety. This document is based on the information given in [1, 2, 3].Postprint (published version

    Planning wrench-feasible motions for cable-driven hexapods

    Get PDF
    Motion paths of cable-driven hexapods must carefully be planned to ensure that the lengths and tensions of all cables remain within acceptable limits, for a given wrench applied to the platform. The cables cannot go slack-to keep the control of the robot-nor excessively tightto prevent cable breakage-even in the presence of bounded perturbations of the wrench. This paper proposes a path-planning method that accommodates such constraints simultaneously. Given two configurations of the robot, the method attempts to connect them through a path that, at any point, allows the cables to counteract any wrench lying in a predefined uncertainty region. The configuration space, or C-space for short, is placed in correspondence with a smooth manifold, which facilitates the definition of a continuation strategy to search this space systematically from one configuration, until the second configuration is found, or path nonexistence is proved by exhaustion of the search. The force Jacobian is full rank everywhere on the C-space, which implies that the computed paths will naturally avoid crossing the forward singularity locus of the robot. The adjustment of tension limits, moreover, allows to maintain a meaningful clearance relative to such locus. The approach is applicable to compute paths subject to geometric constraints on the platform pose or to synthesize free-flying motions in the full 6-D C-space. Experiments illustrate the performance of the method in a real prototype.Postprint (author's final draft

    Planning singularity-free force-feasible paths on the Stewart platform

    Get PDF
    This paper provides a method for computing force-feasible paths on the Stewart platform. Given two configurations of the platform, the method attempts to connect them through a path that, at any point, allows the platform to counteract any external wrench lying inside a predefined six-dimensional region. In particular, the Jacobian matrix of the manipulator will be full rank along such path, so that the path will not traverse the forward singularity locus at any point. The path is computed by first characterizing the force-feasible C-space of the manipulator as the solution set of a system of equations, and then using a higher-dimensional continuation technique to explore this set systematically from one configuration, until the second configuration is found. Examples are included that demonstrate the performance of the method on illustrative situations.Preprin

    On the numerical classification of the singularities of robot manipulators

    Get PDF
    This paper is concerned with the task to obtain a complete description of the singularity set of any given non-redundant manipulator, including the identification and the precise computation of each constituent singularity class. Configurations belonging to the same class are equivalent in terms of the various types of kinematic and static degeneracy that characterize mechanism singularity. The proposed approach is an extension of recent work on computing singularities using a numerical method based on linear relaxations. Classification is sought by means of a hierarchy of singularity tests, each formulated as a system of quadratic or linear equations, which yields sets of classes to which an identified singularity cannot belong. A planar manipulator exemplifies the process of classification, and illustrates how, while most singularities get completely classified, for some lower-dimensional subsets one can only identify a restricted list of possible singularity classes.Postprint (published version

    A general method for the numerical computation of manipulator singularity sets

    Get PDF
    The analysis of singularities is central to the development and control of a manipulator. However, existing methods for singularity set computation still concentrate on specific classes of manipulators. The absence of general methods able to perform such computation on a large class of manipulators is problematic because it hinders the analysis of unconventional manipulators and the development of new robot topologies. The purpose of this paper is to provide such a method for nonredundant mechanisms with algebraic lower pairs and designated input and output speeds. We formulate systems of equations that describe the whole singularity set and each one of the singularity types independently, and show how to compute the configurations in each type using a numerical technique based on linear relaxations. The method can be used to analyze manipulators with arbitrary geometry, and it isolates the singularities with the desired accuracy. We illustrate the formulation of the conditions and their numerical solution with examples, and use 3-D projections to visualize the complex partitions of the configuration space induced by the singularities.Preprin
    corecore